Search results for "MSC: Primary"

showing 10 items of 16 documents

Triple planes with $p_g=q=0$

2019

We show that general triple planes with p_g=q=0 belong to at most 12 families, that we call surfaces of type I,..., XII, and we prove that the corresponding Tschirnhausen bundle is direct sum of two line bundles in cases I, II, III, whereas is a rank 2 Steiner bundle in the remaining cases. We also provide existence results and explicit constructions for surfaces of type I,..., VII, recovering all classical examples and discovering several new ones. In particular, triple planes of type VII provide counterexamples to a wrong claim made in 1942 by Bronowski.

Discrete mathematicsSteiner bundleApplied MathematicsGeneral Mathematics010102 general mathematicsprojective varietiesspaceadjunction theorysurfaces01 natural sciences14E20bundlesunstable hyperplanesMathematics - Algebraic GeometryTriple plane0103 physical sciencesFOS: Mathematics010307 mathematical physicsarrangements[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsMSc: Primary 14E20 14J60Algebraic Geometry (math.AG)Mathematicscovers
researchProduct

Highly transitive actions of groups acting on trees

2015

We show that a group acting on a non-trivial tree with finite edge stabilizers and icc vertex stabilizers admits a faithful and highly transitive action on an infinite countable set. This result is actually true for infinite vertex stabilizers and some more general, finite of infinite, edge stabilizers that we call highly core-free. We study the notion of highly core-free subgroups and give some examples. In the case of amalgamated free products over highly core-free subgroups and HNN extensions with highly core-free base groups we obtain a genericity result for faithful and highly transitive actions. In particular, we recover the result of D. Kitroser stating that the fundamental group of …

Vertex (graph theory)20B22 20E06 20E08Transitive relationApplied MathematicsGeneral Mathematics010102 general mathematicsamenable actionsHighly transitive actionsTransitive actionGroup Theory (math.GR)0102 computer and information sciences01 natural sciencesgroups acting on trees[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics::Group TheoryFree product010201 computation theory & mathematicsFOS: MathematicsMSC: Primary 20B22; Secondary 20E06 20E08 43A07Countable setHNN extension0101 mathematicsMathematics - Group TheoryMathematicsProceedings of the American Mathematical Society
researchProduct

Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section

2018

International audience; In the present paper we completely classify locally free sheaves of rank 2 with vanishing intermediate cohomology modules on the image of the Segre embedding $\mathbb{P}^2$ x $\mathbb{P}^2 \subseteq \mathbb{P}^8$ and its general hyperplane sections.Such a classification extends similar already known results regarding del Pezzo varieties with Picard numbers 1 and 3 and dimension at least 3.

Algebra and Number TheoryDegree (graph theory)Image (category theory)010102 general mathematicsDimension (graph theory)MSC: Primary 14J60 ; secondary 14J45Hyperplane sectionRank (differential topology)01 natural sciencesCohomologySegre embedding[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsAlgebraMathematics::Algebraic GeometryHyperplane0103 physical sciences010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsMathematics
researchProduct

The forgotten mathematical legacy of Peano

2019

International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.

PeanoPeano's axioms of arithmeticPeano's counterexamplesWeierstrass maximum theoremabstract measuresGeneral MathematicsClosure (topology)tangencyinterioranti-distributive familiesfoundationdefinitions by abstractionlinear differential equationsaxiom of choiceLogical conjunctionPeano axiomsproofFormal languageAxiom of choiceMSC: Primary 01A55 01A6003-03 26-03 28-03 34-03 54-03; Secondary15A75 26A03 26A2426B25 26B05 28A1228A15 28A75.affine exterior algebra[MATH]Mathematics [math]reduction formulaeMathematicsnonlinear differential equationsoptimality conditionsdifferentiation of measuressweeping-tangent theoremPeano's axioms of geometryPeano's filling curvereduction of mathematics to setssurface areaclosuremean value theoremDirichlet functionNonlinear differential equationssubtangentsEpistemologymeasure theoryplanar measurelower and upper limits of setsdistributive familiescompactnessmathematical definitions1886 existence theoremdifferentiabilityDissertationes Mathematicae
researchProduct

Locally nilpotent derivations of rings graded by an abelian group

2019

International audience

Russel cubic threefoldPure mathematicsAffine algebraic geometryPham-Brieskorn variety010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Locally nilpotent13A50Locally nilpotent derivation01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Russell cubic threefold0103 physical sciences010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsAbelian group14R20MSC: Primary 14R20 ; Secondary 13A50ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Characterization of the Clarke regularity of subanalytic sets

2017

International audience; In this note, we will show that for a closed subanalytic subset $A \subset \mathbb{R}^n$, the Clarke tangential regularity of $A$ at $x_0 \in A$ is equivalent to the coincidence of the Clarke's tangent cone to $A$ at $x_0$ with the set \\$$\mathcal{L}(A, x_0):= \bigg\{\dot{c}_+(0) \in \mathbb{R}^n: \, c:[0,1]\longrightarrow A\;\;\mbox{\it is Lipschitz}, \, c(0)=x_0\bigg\}.$$Where $\dot{c}_+(0)$ denotes the right-strict derivative of $c$ at $0$. The results obtained are used to show that the Clarke regularity of the epigraph of a function may be characterized by a new formula of the Clarke subdifferential of that function.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC][ MATH ] Mathematics [math]Computer Science::Computer Science and Game Theory021103 operations researchSubanalytic setTangent coneApplied MathematicsGeneral Mathematics010102 general mathematicsTangent coneMathematical analysis0211 other engineering and technologiesSubanalytic sets02 engineering and technologyCharacterization (mathematics)16. Peace & justice01 natural sciencesMSC: Primary 49J52 46N10 58C20; Secondary 34A60Clarke regularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct

Module categories of finite Hopf algebroids, and self-duality

2017

International audience; We characterize the module categories of suitably finite Hopf algebroids (more precisely, $X_R$-bialgebras in the sense of Takeuchi (1977) that are Hopf and finite in the sense of a work by the author (2000)) as those $k$-linear abelian monoidal categories that are module categories of some algebra, and admit dual objects for "sufficiently many" of their objects. Then we proceed to show that in many situations the Hopf algebroid can be chosen to be self-dual, in a sense to be made precise. This generalizes a result of Pfeiffer for pivotal fusion categories and the weak Hopf algebras associated to them.

Self-duality[ MATH ] Mathematics [math]Finite tensor categoryGeneral MathematicsDuality (mathematics)Representation theory of Hopf algebrasBimodulesQuasitriangular Hopf algebra01 natural sciencesMonoidal CategoriesMathematics::Category TheoryMathematics::Quantum Algebra0103 physical sciencesRings0101 mathematicsAlgebra over a fieldAbelian group[MATH]Mathematics [math]Fusion categoryHopf algebroidMSC: Primary 16T99 18D10SubfactorsMathematicsQuantum groupApplied Mathematics010102 general mathematicsMathematics::Rings and AlgebrasTensor CategoriesTheorem16. Peace & justiceHopf algebraDual (category theory)Algebra010307 mathematical physicsWeak Hopf algebra
researchProduct

Seifert manifolds admitting partially hyperbolic diffeomorphisms

2017

We characterize which 3-dimensional Seifert manifolds admit transitive partially hyperbolic diffeomorphisms. In particular, a circle bundle over a higher-genus surface admits a transitive partially hyperbolic diffeomorphism if and only if it admits an Anosov flow.

Surface (mathematics)Pure mathematicsMathematics::Dynamical SystemsCircle bundle[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences[MATH.MATH-GN]Mathematics [math]/General Topology [math.GN]0103 physical sciencesFOS: MathematicsMSC: Primary: 37D30 37C15; Secondary: 57R30 55R05.Mathematics - Dynamical Systems0101 mathematicsMathematics::Symplectic GeometrySeifert spacesMathematics - General TopologyMathematicsTransitive relationAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::Geometric TopologyFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphismAnalysis
researchProduct

Building Anosov flows on $3$–manifolds

2014

We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.

[ MATH ] Mathematics [math]Pure mathematicsAnosov flowMathematics::Dynamical Systems3–manifolds[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)$3$–manifolds01 natural sciencesFoliationsSet (abstract data type)MSC: Primary: 37D20 Secondary: 57M9957M99Diffeomorphisms0103 physical sciencesAttractorFOS: Mathematics0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsManifoldsMathematics::Symplectic Geometry3-manifold37D20 57MMathematicsTransitive relation37D20010308 nuclear & particles physics010102 general mathematicsTorusMathematics::Geometric TopologyFlow (mathematics)Anosov flowsFoliation (geology)Vector fieldhyperbolic plugsGeometry and Topologyhyperbolic basic set3-manifold
researchProduct

Moduli spaces of rank two aCM bundles on the Segre product of three projective lines

2016

Let P^n be the projective space of dimension n on an algebraically closed field of characteristic 0 and F be the image of the Segre embedding of P^1xP^1xP^1 inside P^7. In the present paper we deal with the moduli spaces of locally free sheaves E on F of rank 2 with h^i(F,E(t))=0 for i=1,2 and each integer t.

14J60 14J45 14D20[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Rank (differential topology)Commutative Algebra (math.AC)01 natural sciences[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC]CombinatoricsMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsProjective testAlgebraic Geometry (math.AG)MathematicsAlgebra and Number TheoryImage (category theory)010102 general mathematicsMathematics - Commutative Algebra16. Peace & justice[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Moduli spaceSegre embeddingMSC: Primary: 14J60; secondary: 14J45; 14D20Product (mathematics)[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsJournal of Pure and Applied Algebra
researchProduct